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Positron Emission Tomography (PET) - Basics



Positron Emission Tomography in a nutshell
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PET image contrast determined by radiotracers

key factors for diagnostic image quality

* tracer specificity + sensitivity
* photon detection system (scanner)

image reconstruction

t = 001s - frame 01

* image analysis
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PET data acquisition principle
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* detection and localization of annihilation photon pairs including
_ arrival time difference (TOF)

Annihilation Image Reconstruction = SOTA: 3-6cm FHWM

-> leads to variance reduction in reconstruction

. optional) histogramming of data into “TOF sinograms”
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PET coincidences types

Random coincidence

Scatter coincidence

True coincidence
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Figure adapted from Cherry: “Physics in Nuclear Medicine”



PET reconstruction as an inverse problem

Xrecon = argminx Z)_/I(X) — Vi |Og)_/,'(X) + BR(X)

data fidelity prior knowledge
neg. Poisson logL about solution

y(x) = t(x, p) +5(x, 1) +7(x, p)
y(x)=t(x,u)+5+7=A(u)x+b
forward model of acquisition physics

object dependent because of attenuation
scatter and random usually “pre-estimated”

acquired emission data y
reconstructed image x Fundamental recon challenges

high data noise levels
limited resolution of data

accurate modelling of acquisition physics
(e.g. scatter and resolution effects)

data size and recon speed

expressing prior knowledge



PET compared to CT and MRI

(TOF) PET (proton) MRI at 1.5/3T (energy integrating helical) CT

data SNR “low” “high” “high”




From signals to images to decisions
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Challenges in PET imaging



Noise / Data size / Data sparsity

Tt 0
= LTk

P

TOF bin 15/29 summed TOF bins

TOF bin 22/29

high noise levels because of limits in
injected activity

acquisition time

detection sensitivity

*  TOF histogrammed data is huge (10-100 GB)
but extremely sparse

* evaluation of full forward model can be
extremely slow (several minutes)

SAFOV LAFOV 10 min

Alberts et al. Clinical performance of long axial field of view PET/CT: a head-to-head intra-individual comparison of the Biograph Vision Quadra with the Biograph Vision PET/CT. Eur J Nucl Med Mol Imaging 48
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Resolution

& Vision600
) » ca 4mm res.
~

PET spatial resolution is “low” because

* Finite detector size

* scanner radius (photon acolinearity)
* parallax effect

* (positron range)

FLAIR MRI _ Vision600

. . . . 13
Carson et al. “Exceptional PET Images from the First Human Scan on the NeuroEXPLORER, a next-generation ultra-high performance brain PET imager”, INM 2023
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PET needs long acquisition times
5—-90min

motion - resolution degradation

true “high-resolution” PET needs
motion tracking and compensation

same for respiratory and cardiac
motion
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Quantitative “corrections” in the forward model

“Improving scatter estimation in PET will bring our kids through college.”

i) — 7 _ _
C. Stearns GE Healthcare y(x) = t(x, p) + 5(x, p) + 7(x, p)

5 Subsamples 8 Subsamples 5 Subsamples + offset 8 Subsamples + offset

Wangerin et al. “Clinical Evaluation of 68Ga-PSMA-Il and 68Ga-RM2 PET Images Reconstructed With an Improved Scatter Correction Algorithm”, Am J Roent, 2018 15



Al/DL/ML in PET imaging



From signals to images to decisions — with Al/DL/ML?
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Detector level signal processing

Phys. Med. Biol. 69 (2024) 155026
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Denoising

IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, VOL. 8, NO. 4, APRIL 2024 |
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ML during PET reconstruction

JOURNAL ARTICLE

AI for PET image reconstruction 3
Andrew J Reader, PhD, Bolin Pan, PhD

British Journal of Radiology, Volume 96, Issue 1150, 1 October 2023, 20230292, https://
doi.org/10.1259/bjr.20230292

Published: 04 September 2023  Article history v

16:05 - 16:55 Generative Al for medical image reconstruction in positron emission tomography
(PET)
Andrew Reader
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Improved Quantification in End-to-End Deep

Learning FastPET Reconstruction Using Multiview
Histo-Images of Attenuation Correction Factors

Magl Millardet ', Deepak Bharkhada ™', Member, IEEE, Juhi Raj, Josh Schaefferkoetter ', Member, IEEE,
Vladimir Panin", Member, IEEE, Maurizio Conti, Member, IEEE, and Samuel Matej ', Senior Member, IEEE

IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, VOL. 10, NO. 1, JANUARY 2026
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Fig. 10. Reconstruction of the diseased liver of validation patient 2 (4 min scan, 1.2 x 10° prompts, 70kg) reconstructed with the clinical OSEM, the target
MLEM, and the four different FastPET techniques. This liver exhibits lesion shapes that have not been seen during training. The image is acquired on the
biograph vision quadra. All subfigures use the same unsaturated colormap. (a) Target MLEM (50 x 1). (b) FastPET-u-map. (c) FastPET-pre-corr. (d) Clinical
OSEM (4 x 5). (e) FastPET-ACF. (f) FastPET-all. (g) Colormap (SUV).




Super resolution

Neural Networks 125 (2020) 83-91

PET image super-resolution using generative adversarial networks
Tzu-An Song !, Samadrita Roy Chowdhury *!, Fan Yang?, Joyita Dutta <"

@ Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA, United States of America
b Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
¢ Geriatric Research, Education and Clinical Center, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA, United States of America
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Fig. 5. Transverse image slices from a human subject showing: (A) HR MR, (B) LR PET, (C) HR PET, (D) RBV, (E) TV, (F) JE, (G) VDSR, (H) Lin et al. (2018), (I)
SSSR-SVPSF (G, replaced by SVPSF), (J) SSSR-NoSim (no simulation guidance), and (K) SSSR-Sim (the proposed method with simulation guidance). The red box in the
MR image indicates the region that is magnified for closer inspection in Fig. 6.
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Supervised vs self supervised?

Supervised PET DL possible for Need for self-supervised DL

* “high count” scans also contain noise

* denoisingif high count scan is available (depending on scanner / acq. type)
- subsample LM file for virtual lower
count scan * ”paired acquisitions” suffer from motion /

differences in tracer kinetics ...
* paired scans of same subject (e.g. on
different scanners) available * the amount of PET scans is very small

- very rare compared to CT and MR scans
(foundational models?)
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Attenuation correction

IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, VOL. 5, NO. 2, MARCH 2021

A Review of Deep-Learning-Based Approaches
for Attenuation Correction in Positron
Emission Tomography

40000
Jae Sung Lee ', Senior Member, IEEE
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DL-based scatter estimation

Phys. Med. Biol. 68 (2023) 065004
PET scatter estimation using deep learning U-Net architecture

Baptiste Laurent"" ), Alexandre Bousse' @, Thibaut Merlin', Stephan Nekolla’ and Dimitris Visvikis'

Emission sinogram
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ACF sinogram Convolution ReLU y, [Figure 10. Clinical mMR images reconstructed without scatter correction, and with SSS and DLSE corrections. Display contrast is
tayse kept the same for all methods. Profiles along the transaxial axis show the mean activity within orange rectangles.
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Opportunities enabled by new PET scanners



New “high-resolution” PET scanners (NeuroExplorer)

SiPM SiPM




New high-sensitivity PET scanners (large axial FOV)

* PET systems with high solid angle coverage ”“long
scanners (>1m)” and detectors with “decent”
stopping power (large axial FOV)

N\
=R
. & \ . = e v
High sensitivity PET scanners | 2 . J : -

ca. 3-12x higher noise equivalent count rate for
70cm phantom

drawback: high price

T

unique opportunities for denoising research! SAFOV LAFOV 10 min

28



Large axial FOV data for denoising

full counts 1/10 counts 1/100 counts

;,.f.

* high count scans (e.g. 3 MBg/kg + 10min) from WB
systems are unique source of low noise and high

. ® ] ' L3 resolution data sets for supervised learning
) ‘: ’
‘ * allows critical evaluation of denoising / processing
algorithms with true “ground truth / gold standard”
@ | - images

* data of immense values for data-driven research

* see Ultra-Low Dose PET Imaging Challenge 2025
https://udpet-challenge.github.io/

unique opportunities for denoising research 29
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Taming the wild west (Al in PET / nuclear medicine)



Taming Al in medical imaging in the wild west according
to chat GPT 5.2




Recommendations by German radiation protection commission

Application of artificial intelligence in image reconstruction and
processing in radiology and nuclear medicine

Recommendation of the Radiation Protection Commission (2026)

* Al methods must not remove or distort
diagnostically relevant structures, must not
generate artificial structures, and must preserve
guantification

* independent and external validation of methods

* strong developer disclosure obligations to better

. e 1 . . define training distribution + methods
* dose reduction only if diagnostic performance is 8

preserved
* keep conventional (non-Al) methods available as a

* (also) validate performance with export human fallback/reference

observers

32



Which image quality metrics matter?

Journal of Imaging Informatics in Medicine (2025) 38:3444-3469

A Study of Why We Need to Reassess Full Reference Image Quality
Assessment with Medical Images

Anna Breger'2( - Ander Biguri' - Malena Sabaté Landman? - lan Selby* - Nicole Amberg? - Elisabeth Brunner*
Janek Grohl%7 . Sepideh Hatamikia®? - Clemens Karner? - Lipeng Ning'? - Séren Dittmer! - Michael Roberts’ -
A.LX.-C.O.V.N.E.T. Collaboration - Carola-Bibiane Schonlieb’

Problems of PSNR/SSIM/LPIPS 1Q metrics
(a) Reference (b) (27.6, 0.70, 0.37) (c) (31.9, 0.73, 0.29)

e penalization of task-irrelevant perceptual
information

* inability to detect local errors and structural
details

* misjudgement of overall visual appearance

e undesired sensitivity to small spatial (d) (32.5, 0.84, 0.19) (e) (32.5,0.77, 0.20) (f) (33.0, 0.89, 0.12)
changes (PSNR, SSIM)

Figure 3: Reference image (a) and outputs of different reconstruction methods (b)-(f) ap-
plied to dose simulated data. PSNR/SSIM/LPIPS are unable to identify the best
reconstruction (c), where also the tumour is visualized well.



Experience from 2025 low dose denoising challenge (logSUV)

3D Input DoubleConv
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Simplistic and fast 3D Unet + clever data preprocessing + classification of training data enough for 2d place!
—> data curation probably more important that DL method / architectures 34



Experience from 2025 low dose denoising challenge

1/100 counts (denoised)
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You cannot beat physics / Poisson statistics ...

small lesion: A =2 kBq/ml = 2000 Bq/ml at full dose V = 0.08 ml (sphere with diameter 0.53cm)

Total lesion activi Can Deep Learning Defy Physics?

Emitted photon g 5 8 presenca o fisy
in 10min B T

Detected true
coincidences

Ying et al
CVPR 2019

oOTaes 200x LC).\;v—d
Shen et al Nat BME 2019 '

« All DL methods implicitly assume that the

measured data are sufficient to uniquely
determine the image

36



Summary



Discussion, Summary, Thoughts

* PET imaging challenges somehow similar, but also very
different MR and CT

* PET images can be very diverse (many different tracers,
contrasts, short or long acquisitions ...)
noise is usually main problem

Al /DL/MLis applied in all steps of the PET image
(decision) pipeline — at least in research

methods / creativity is not the bottle neck
- high quality big open data sets and careful validation is

understanding where benefit comes from
(new methods or better data) is hard

taming Al (meaningful regulation / QC) is hard

“robustness over peak performance” for clinical use
(problem for academia)

outliers and incidental findings matter!
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OKAY, WITH My SEVEN APPLES For all experts in convex optimization
ADDED TO YOUR FIVE, WE HAVE...

LET'S SEE...TWELVE APPLES! PETRIC 2: Second PET Rapid Image reconstruction Challenge
INCREDIBLE!
Eﬁﬁgﬂmﬁmﬂgg\@‘r Main organisers: Matthias Ehrhardt (U Bath), Christoph Kolbitsch (PTB), Charalampos Tsoumpas (RU Groningen), Kris

Thielemans (UCL).

Technical support (CoSeC, UKRI STFC): Casper da Costa-Luis, Edoardo Pasca

f&) \% ¢ Time frame: 17 November 2025 - 15 February 2026
SRR Time for questions

EXPERIMENTAL MATHEMATICIANS

https://xkcd.com/3180/

Georg Schramm, Department of Imaging & Pathology, Division of Nuclear Medicine

KU LEUVEN
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